Slurry Pump Selection
Slurry Pump Selection
May 13, 2020
Slurry Pump Selection is a complex process and requires close cooperation between the slurry pump manufacturer
and the end user as the medium to be pumped and the pump operating
conditions are extremely important to the correct pump selection.
Selection of slurry pumps is more difficult than selection of pumps for water and liquids. Many factors and corrections to the duty point affect brake horsepower and wear. Root-dynamic Centrifugal Slurry Pumps (ANSI/HI 12.1-12.6-2016) provides methods for calculation of slurry pumps. The peripheral speed of the impeller is one of the main features and classification of slurry pumps. Speed must be in accordance with the slurry type classification (abrasion classification) in order to maintain a reasonable life in service due to high abrasion of solids.
Before selecting an appropriate slurry pump the engineers considers capacity, head, solids handling capacity, efficiency and power, speed and NPSH.
In mining operations, slurry pumps are used to transport the target minerals and overburden to plants which use a system of wet separation. After crushing and screening, the mineral is usually milled before being transported for further separation. This process requires a large volume of slurry to be transported across often long distances. Once this process is complete, the tailings are usually disposed of via piping systems to the tailings dumping site.
Special designs are also available for handling froth in the separation process.
Slurry pumps are widely used in transport of abrasive solids in industries such as mining, dredging, and steel. They are often designed to be suitable for heavy-wearing and heavy-duty uses. Depending on the mining process, some slurries are corrosive which presents a challenge because corrosion-resistant materials like stainless steel are softer than high-iron steel. The most common metal alloy used to build slurry pumps is known as "high chrome", which is basically white iron with 27% chromium added to make it less brittle. Rubber line casings are also used for certain application where the solid particles are small.
Selection of slurry pumps is more difficult than selection of pumps for water and liquids. Many factors and corrections to the duty point affect brake horsepower and wear. Root-dynamic Centrifugal Slurry Pumps (ANSI/HI 12.1-12.6-2016) provides methods for calculation of slurry pumps. The peripheral speed of the impeller is one of the main features and classification of slurry pumps. Speed must be in accordance with the slurry type classification (abrasion classification) in order to maintain a reasonable life in service due to high abrasion of solids.
Before selecting an appropriate slurry pump the engineers considers capacity, head, solids handling capacity, efficiency and power, speed and NPSH.
In mining operations, slurry pumps are used to transport the target minerals and overburden to plants which use a system of wet separation. After crushing and screening, the mineral is usually milled before being transported for further separation. This process requires a large volume of slurry to be transported across often long distances. Once this process is complete, the tailings are usually disposed of via piping systems to the tailings dumping site.
Special designs are also available for handling froth in the separation process.
Slurry pumps are widely used in transport of abrasive solids in industries such as mining, dredging, and steel. They are often designed to be suitable for heavy-wearing and heavy-duty uses. Depending on the mining process, some slurries are corrosive which presents a challenge because corrosion-resistant materials like stainless steel are softer than high-iron steel. The most common metal alloy used to build slurry pumps is known as "high chrome", which is basically white iron with 27% chromium added to make it less brittle. Rubber line casings are also used for certain application where the solid particles are small.
Tobee® will outline the basic principles involved in selecting the right pump for the job, and will look predominantly at centrifugal slurry pumps.
Centrifugal Slurry Pumps
Centrifugal slurry pumps are typically used in mineral extraction process plants, and are designed to handle abrasive solids mixed with a carrier fluid.
Slurry pumps often operate 24/7, and in severe conditions the wear life of wetted components can be up to two to three months.
Since excessive wear would be generated on the inter-stage passages of a multi-stage slurry pump, they are invariably single-stage equipment.
Both horizontal and vertical shaft slurry pump configurations are available, with transmission of process slurries around a plant usually handled by horizontal slurry pumps, while vertical slurry pumps are used in sumps and generally have a cantilevered shaft so that all bearings are located above fluid level.
Slurry Pump Service Class
The service class is largely dependent on the nature of the slurry being pumped. A service class chart can be used to get an indication of the expected wear rate of the major wetted components.
The chart is based on aqueous slurries of silica-based solids (Specific Gravity = 2.65), and can be used to provide guidance for mineral slurries if the SG for the slurry is used to determine the severity of service for a slurry pump.
For non-silica materials, the equivalent SG can be found by applying an abrasivity correction factor to the slurry SG and to the d50 particle size, which is the screen that 50 per cent of particticles would pass through.
Slurry Pump Selection
Slurries are often very abrasive and may contain large solid particles. This makes wear life and the ability to pass these large solids key considerations in slurry pump design and slury pump application.
Wear can be controlled by proper pump selection based on the application details provided by the user, and is related to the velocity between the pumped slurry and the pump. For pumps in more severe services to have a satisfactory life, liquid velocities should be reduced.
Table
1 provides recommended service limitations for different service
classes that, when coupled with proper design and selection, can result
in acceptable wear rates.
In Class 4 service, high rotational speed of the slurry pump impeller may lead to high wear in the impeller front sealing area and on the suction liner adjacent to it. Some designs allow for the clearance between the slurry pump impeller face and suction liner to be adjusted to compensate for any wear that occurs so that the desired hydraulic performance can be maintained over time.
Experience has shown that the slurry pump impeller rotational speed should be kept as low as possible for pumps handling abrasive fluids. Wear will vary approximately as the cube of the speed and with particle concentration.
Rubber-lined slurry pumps are limited to lower impeller peripheral speeds because pressure fluctuations from the passing impeller vanes may cause internal heating due to the deformation hysteresis of the rubber. Increasing pressure fluctuations would eventually lead to degradation of the rubber polymer structure.
When operating conditions or other considerations require longer component life, the peripheral speeds should be lowered, noting that wear life would be approximately doubled by a 20 per cent drop in pump rotational speed.
Even the largest, most robust slurry pump running at slow speed may still experience gouging and wear. Where the slurry pump is running compared to its design best efficiency point (BEP) is important. Acceptable gouge-free wear depends, among other factors, on the actual percentage of BEP flow rates experienced during operation, with 100 per cent BEP being the optimum.
In Class 4 service, high rotational speed of the slurry pump impeller may lead to high wear in the impeller front sealing area and on the suction liner adjacent to it. Some designs allow for the clearance between the slurry pump impeller face and suction liner to be adjusted to compensate for any wear that occurs so that the desired hydraulic performance can be maintained over time.
Experience has shown that the slurry pump impeller rotational speed should be kept as low as possible for pumps handling abrasive fluids. Wear will vary approximately as the cube of the speed and with particle concentration.
Rubber-lined slurry pumps are limited to lower impeller peripheral speeds because pressure fluctuations from the passing impeller vanes may cause internal heating due to the deformation hysteresis of the rubber. Increasing pressure fluctuations would eventually lead to degradation of the rubber polymer structure.
When operating conditions or other considerations require longer component life, the peripheral speeds should be lowered, noting that wear life would be approximately doubled by a 20 per cent drop in pump rotational speed.
Even the largest, most robust slurry pump running at slow speed may still experience gouging and wear. Where the slurry pump is running compared to its design best efficiency point (BEP) is important. Acceptable gouge-free wear depends, among other factors, on the actual percentage of BEP flow rates experienced during operation, with 100 per cent BEP being the optimum.
HEBEI TOBEE PUMP CO.,LIMITED
Add:Hi-tech Development Zone | Shijiazhuang City | Hebei Province | China.
Add:Hi-tech Development Zone | Shijiazhuang City | Hebei Province | China.
Email:Sales@tobeepump.com | Skype:Tobee.pump | Mob:+86-18032034573 | Fax:+86-0311-87221317
Web:www.tobeepump.com | Web:www.slurrypumpsupply.com | Web:www.tobee.cc | Web:www.hydroman.cn
评论
发表评论